
Final Exam — Analysis (WPMA14004)

Tuesday 20 June 2017, 9.00h–12.00h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. Provide clear arguments for all your answers: only answering “yes”, “no”, or “42”
is not sufficient. You may use all theorems and statements in the book, but you
should clearly indicate which of them you are using.

3. The total score for all questions equals 90. If p is the number of marks then the
exam grade is G = 1 + p/10.

Problem 1 (15 points)

Assume that the sets A,B ⊂ R are both nonempty and bounded below. Prove that

inf(A ∪ B) = min{inf A, inf B}.

Hint: first explain that it suffices to consider only the case inf A ≤ inf B.

Problem 2 (5 + 6 + 4 = 15 points)

Assume that (an) and (bn) are positive sequences such that

lim
an
bn

= c > 0.

Prove the following statements:

(a) For all ǫ > 0 there exists N ∈ N such that

n ≥ N ⇒ (c− ǫ)bn < an < (c+ ǫ)bn.

(b) The series
∑

∞

n=1 an converges if and only if the series
∑

∞

n=1 bn converges.

(c) The series
∑

∞

n=1 sin(
1
n
) diverges. Hint: what is limx→0

sinx
x
?

Problem 3 (8 + 7 = 15 points)

(a) Prove that if A ⊆ R is compact, then for each ǫ > 0 there exist finitely many points
a1, . . . , an ∈ A such that

A ⊂ Vǫ(a1) ∪ Vǫ(a2) ∪ · · · ∪ Vǫ(an).

Recall that Vǫ(a) = (a− ǫ, a + ǫ).

(b) Show that for the set A =

{

1

n
: n ∈ N

}

the converse of part (a) does not hold.
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Problem 4 (4 + 6 + 5 = 15 points)

(a) State the Mean Value Theorem.

(b) Use the Mean Value Theorem to prove that for all a > 0 the function f(x) = ln(x) is
uniformly continuous on [a,∞).

(c) Is f(x) = ln(x) also uniformly continuous on (0,∞)?

Problem 5 (5 + 5 + 5 = 15 points)

Consider the following sequence of functions:

fn : [0, 1] → R, fn(x) =











2nx if 0 ≤ x < 1/2n,

2− 2nx if 1/2n ≤ x < 1/n,

0 if 1/n ≤ x ≤ 1.

(a) Compute the pointwise limit of (fn) for all x ∈ [0, 1].

(b) Is the convergence uniform on [0, 1]?

(c) Is the convergence uniform on [1
2
, 1]?

Problem 6 (6 + 4 + 5 = 15 points)

Define the function f : [1, 2] → R given by f(x) = 1/x. Consider for n ∈ N a partition P
of the interval [1, 2] which is given by the points

xk =
n + k

n
, k = 0, . . . , n.

(a) Compute the upper sum U(f, P ).

(b) Compute the lower sum L(f, P ).

(c) Prove that f is integrable on [1, 2]. Use an ǫ-argument!

End of test (90 points)
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Solution of Problem 1 (15 points)

Without loss of generality we may assume that inf A ≤ inf B. Otherwise we just exchange
the names of the sets A and B.

An alternative argument is that the case inf B ≤ inf A has a similar proof since the set A
and B appear in the formula in a symmetric way (i.e., interchanging the roles of A and
B gives the same formula).
(5 points)

Therefore, we need to prove that inf(A ∪ B) = inf A. To that end, we need to prove two
things:

(i) inf A is a lower bound for A ∪B;

(ii) any other lower bound ℓ of A ∪B satisfies ℓ ≤ inf A.

Alternatively, we can prove that any number greater than inf A is no longer a lower
bound of A ∪B.

Let x ∈ A ∪ B be arbitrary, then x ∈ A or x ∈ B. Therefore, inf A ≤ x or inf B ≤ x.
Since inf A ≤ inf B it follows that inf A ≤ x for all x ∈ A ∪ B. We conclude that inf A is
a lower bound for the set A ∪B.
(5 points)

Let ℓ be any lower bound for A∪B. Since ℓ ≤ x for all x ∈ A∪B it follows in particular
that ℓ ≤ x for all x ∈ A. Since inf A is the greatest lower bound of A it follows that
ℓ ≤ inf A which also shows that inf A is the greatest lower bound of A ∪ B.
(5 points)

Alternative argument. Let ǫ > 0 be arbitrary then there exists an element x ∈ A such
that x < inf A+ ǫ. This means that inf A+ ǫ is not a lower bound for A. Since A ⊂ A∪B
it follows that inf A + ǫ cannot be a lower bound for A ∪ B. We conclude that inf A is
the greatest lower bound of A ∪ B.
(5 points)
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Solution of Problem 2 (5 + 6 + 4 = 15 points)

(a) By definition of the statement lim(an/bn) = c it follows that for each ǫ > 0 there
exists N ∈ N such that

n ≥ N ⇒

∣

∣

∣

∣

an
bn

− c

∣

∣

∣

∣

< ǫ.

(3 points)

The latter inequality can be rewritten as

−ǫ <
an
bn

− c < ǫ.

and rearranging terms gives

(c− ǫ)bn < an < (c+ ǫ)bn.

(2 points)

(b) Let ǫ = 1
2
c (any 0 < ǫ < c works) and let N ∈ N be as in part (a).

(i) If
∑

∞

n=1 an converges, then
∑

∞

n=1 2an/c converges as well by the Algebraic Limit
Theorem for series.

Since bn < 2an/c for all n ≥ N it follows by the Comparison Test that
∑

∞

n=1 bn
converges as well. (Note that the first N terms do not matter for convergence.)
(3 points)

(ii) Conversely, if
∑

∞

n=1 bn converges, then
∑

∞

n=1
3
2
cbn converges as well by the Al-

gebraic Limit Theorem for series.

Since an < 3
2
cbn for all n ≥ N it follows by the Comparison Test that

∑

∞

n=1 an
converges as well.
(3 points)

(c) Using the standard limit limx→0 sin(x)/x = 1 it follows that with an = sin(1/n) and
bn = 1/n we get c = lim an/bn = 1.
(2 points)

The series
∑

∞

n=1 bn is the harmonic series and hence diverges. By part (b) it then
follows that the series

∑

∞

n=1 an diverges as well.
(2 points)
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Solution of Problem 3 (8 + 7 = 15 points)

(a) Let ǫ > 0 be arbitrary. For each a ∈ A the set Vǫ(a) is open.
(2 points)

Note that A ⊂ ∪a∈AVǫ(a), which means that the collection {Vǫ(a) : a ∈ A} is an
open cover for A.
(2 points)

Since A is compact any open cover has a finite subcover. In particular, this means
that A can be covered by finitely many of the sets Vǫ(a). Hence, there exist finitely
many points a1, . . . , an ∈ A such that

A ⊂ Vǫ(a1) ∪ Vǫ(a2) ∪ · · · ∪ Vǫ(an).

(4 points)

(b) First note that the set A = { 1
n
: n ∈ N} is not compact since it is not closed. Indeed,

0 is a limit point of A which is not contained in A.
(3 points)

Let ǫ > 0 be arbitrary, and choose n0 ∈ N such that 1/n0 < ǫ. Then 0 ∈ Vǫ(1/n0)
and the set A only has finitely many elements outside Vǫ(1/n0). Indeed,

1

n
>

1

n0
+ ǫ ⇒ n <

n0

1 + ǫn0
.

This proves that the noncompact set A can still be covered by finitely many of the
open sets Vǫ(1/n).
(4 points)
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Solution of Problem 4 (4 + 6 + 5 = 15 points)

(a) If f : [a, b] → R is continuous on [a, b] and differentiable on (a, b), then there exists a
point c ∈ (a, b) where

f ′(c) =
f(b)− f(a)

b− a
.

(4 points)

(b) Let x, y ∈ [a,∞) be fixed and x 6= y; without loss of generality we may assume that
x < y. The function f is continuous on [x, y] and differentiable on (x, y) which means
that the Mean Value Theorem can be applied. Hence, there exists c ∈ (x, y) such
that

ln(x)− ln(y) = ln′(c)(x− y) =
x− y

c
.

Since c > a it follows that

| ln(x)− ln(y)| =
|x− y|

c
≤

|x− y|

a
.

(3 points)

Now let ǫ > 0 be arbitrary and choose δ ≤ aǫ. Then

|x− y| < δ ⇒ | ln(x)− ln(y)| ≤
|x− y|

a
<

δ

a
≤ ǫ,

which shows that f(x) = ln(x) is uniformly continuous on [a,∞).
(3 points)

(c) No, f is not uniformly continuous on (0,∞). To see this, take the sequences xn = e−n

and yn = e−(n+1). Then |xn − yn| → 0, but
∣

∣ ln(xn) − ln(yn)
∣

∣ = 1 for all n ∈ N.
By the sequential criterion for the absence of nonuniform continuity it follows that
f(x) = ln(x) is not uniformly continuous on (0,∞).
(5 points)

Alternative argument. Let ǫ0 = 1 and choose δ > 0 arbitrary. Choose 0 < y < δ/(e−1)
and x = ey, then

|x− y| = x− y = ey − y = (e− 1)y < δ,

but

| ln(x)− ln(y)| = ln

(

x

y

)

= 1 = ǫ0,

which shows that f(x) = ln(x) is not uniformly continuous on (0,∞).
(5 points)
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Solution of Problem 5 (5 + 5 + 5 = 15 points)

(a) Note that fn(0) = 0 for all n ∈ N which implies that lim fn(x) = 0 for x = 0.
(2 points)

If 0 < x ≤ 1 then fn(x) = 0 for all n ≥ 1/x, which implies that lim fn(x) = 0 as
well. Hence, the pointwise limit of (fn) is the zero function.
(3 points)

(b) Solution 1. Note that fn(1/2n) = 1 for all n ∈ N, which implies that

sup
x∈[0,1]

|fn(x)− f(x)| = 1 for all n ∈ N.

This implies that

lim
n→∞

(

sup
x∈[0,1]

|fn(x)− f(x)|

)

= 1 6= 0.

Hence, the convergence is not uniform on [0, 1].
(5 points)

Solution 2. If the convergence were uniform on [0, 1], then for each ǫ > 0 there
exists N ∈ N such that

n ≥ N ⇒ |fn(x)− f(x)| < ǫ for all x ∈ [0, 1].

In particular, this should hold for 0 < ǫ < 1. However, taking x = 1/2n violates
this definition. Hence, the convergence is not uniform on [0, 1].
(5 points)

(c) Solution 1. Note that fn(x) = 0 on [1
2
, 1] for all n ≥ 2, which implies that

lim
n→∞

(

sup
x∈[ 1

2
,1]

|fn(x)− f(x)|

)

= 0,

which proves that the convergence is uniform on [1
2
, 1].

(5 points)

Solution 2. Let ǫ > 0 be arbitrary and take N = 2. Then

n ≥ N ⇒ |fn(x)− f(x)| = fn(x) = 0 < ǫ for all x ∈ [1
2
, 1],

which proves that the convergence is uniform on [1
2
, 1].

(5 points)
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Solution of Problem 6 (6 + 4 + 5 = 15 points)

(a) Since the function is decreasing it follows that

Mk = sup{f(x) : x ∈ [xk−1, xk]} = f(xk−1) =
1

xk−1

=
n

n+ k − 1
.

(2 points)

Furthermore, for all k = 1, . . . , n we have that

xk − xk−1 =
n+ k

n
−

n+ k − 1

n
=

(n+ k)− (n+ k − 1)

n
=

1

n
.

(2 points)

Hence, the upper sum of f with respect to the partition P is given by

U(f, P ) =
n

∑

k=1

Mk(xk − xk−1) =
n

∑

k=1

1

n+ k − 1
.

(2 points)

(b) Since the function is decreasing it follows that

mk = inf{f(x) : x ∈ [xk−1, xk]} = f(xk) =
1

xk

=
n

n + k
.

(2 points)

Hence, the lower sum of f with respect to the partition P is given by

L(f, P ) =
n

∑

k=1

mk(xk − xk−1) =
n

∑

k=1

1

n+ k
.

(2 points)

(c) Note that the difference between the upper and lower sum is a telescoping sum:

U(f, P )− L(f, P ) =

n
∑

k=1

(

1

n+ k − 1
−

1

n+ k

)

=
1

n
−

1

2n
=

1

2n
.

(3 points)

Now, let ǫ > 0 be arbitrary, and choose n ∈ N such that 1/n < 2ǫ. Then

U(f, P )− L(f, P ) < ǫ,

which proves that f is integrable.
(2 points)
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