Final Exam — Analysis (WPMA14004)

Tuesday 20 June 2017, 9.00h-12.00h

University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. Provide clear arguments for all your answers: only answering "yes", "no", or "42" is not sufficient. You may use all theorems and statements in the book, but you should clearly indicate which of them you are using.
- 3. The total score for all questions equals 90. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (15 points)

Assume that the sets $A, B \subset \mathbb{R}$ are both nonempty and bounded below. Prove that

$$\inf(A \cup B) = \min\{\inf A, \inf B\}.$$

Hint: first explain that it suffices to consider only the case $\inf A \leq \inf B$.

Problem 2 (5 + 6 + 4 = 15 points)

Assume that (a_n) and (b_n) are positive sequences such that

$$\lim \frac{a_n}{b_n} = c > 0.$$

Prove the following statements:

(a) For all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$n \ge N \quad \Rightarrow \quad (c-\epsilon)b_n < a_n < (c+\epsilon)b_n.$$

- (b) The series $\sum_{n=1}^{\infty} a_n$ converges if and only if the series $\sum_{n=1}^{\infty} b_n$ converges.
- (c) The series $\sum_{n=1}^{\infty} \sin(\frac{1}{n})$ diverges. Hint: what is $\lim_{x\to 0} \frac{\sin x}{x}$?

Problem 3 (8 + 7 = 15 points)

(a) Prove that if $A \subseteq \mathbb{R}$ is compact, then for each $\epsilon > 0$ there exist finitely many points $a_1, \ldots, a_n \in A$ such that

$$A \subset V_{\epsilon}(a_1) \cup V_{\epsilon}(a_2) \cup \cdots \cup V_{\epsilon}(a_n).$$

Recall that $V_{\epsilon}(a) = (a - \epsilon, a + \epsilon).$

(b) Show that for the set $A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$ the converse of part (a) does *not* hold.

— Page 1 of 8 —

Problem 4 (4 + 6 + 5 = 15 points)

- (a) State the Mean Value Theorem.
- (b) Use the Mean Value Theorem to prove that for all a > 0 the function $f(x) = \ln(x)$ is uniformly continuous on $[a, \infty)$.
- (c) Is $f(x) = \ln(x)$ also uniformly continuous on $(0, \infty)$?

Problem 5 (5 + 5 + 5 = 15 points)

Consider the following sequence of functions:

$$f_n: [0,1] \to \mathbb{R}, \qquad f_n(x) = \begin{cases} 2nx & \text{if } 0 \le x < 1/2n, \\ 2 - 2nx & \text{if } 1/2n \le x < 1/n, \\ 0 & \text{if } 1/n \le x \le 1. \end{cases}$$

- (a) Compute the pointwise limit of (f_n) for all $x \in [0, 1]$.
- (b) Is the convergence uniform on [0, 1]?
- (c) Is the convergence uniform on $[\frac{1}{2}, 1]$?

Problem 6 (6 + 4 + 5 = 15 points)

Define the function $f : [1,2] \to \mathbb{R}$ given by f(x) = 1/x. Consider for $n \in \mathbb{N}$ a partition P of the interval [1,2] which is given by the points

$$x_k = \frac{n+k}{n}, \quad k = 0, \dots, n$$

- (a) Compute the upper sum U(f, P).
- (b) Compute the lower sum L(f, P).
- (c) Prove that f is integrable on [1, 2]. Use an ϵ -argument!

End of test (90 points)

Solution of Problem 1 (15 points)

Without loss of generality we may assume that $\inf A \leq \inf B$. Otherwise we just exchange the names of the sets A and B.

An alternative argument is that the case $\inf B \leq \inf A$ has a similar proof since the set A and B appear in the formula in a symmetric way (i.e., interchanging the roles of A and B gives the same formula).

(5 points)

Therefore, we need to prove that $\inf(A \cup B) = \inf A$. To that end, we need to prove two things:

- (i) inf A is a lower bound for $A \cup B$;
- (ii) any other lower bound ℓ of $A \cup B$ satisfies $\ell \leq \inf A$.

Alternatively, we can prove that any number greater than $\inf A$ is no longer a lower bound of $A \cup B$.

Let $x \in A \cup B$ be arbitrary, then $x \in A$ or $x \in B$. Therefore, $\inf A \leq x$ or $\inf B \leq x$. Since $\inf A \leq \inf B$ it follows that $\inf A \leq x$ for all $x \in A \cup B$. We conclude that $\inf A$ is a lower bound for the set $A \cup B$.

(5 points)

Let ℓ be any lower bound for $A \cup B$. Since $\ell \leq x$ for all $x \in A \cup B$ it follows in particular that $\ell \leq x$ for all $x \in A$. Since $\inf A$ is the greatest lower bound of A it follows that $\ell \leq \inf A$ which also shows that $\inf A$ is the greatest lower bound of $A \cup B$. (5 points)

Alternative argument. Let $\epsilon > 0$ be arbitrary then there exists an element $x \in A$ such that $x < \inf A + \epsilon$. This means that $\inf A + \epsilon$ is not a lower bound for A. Since $A \subset A \cup B$ it follows that $\inf A + \epsilon$ cannot be a lower bound for $A \cup B$. We conclude that $\inf A$ is the greatest lower bound of $A \cup B$.

(5 points)

Solution of Problem 2 (5 + 6 + 4 = 15 points)

(a) By definition of the statement $\lim(a_n/b_n) = c$ it follows that for each $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$n \ge N \quad \Rightarrow \quad \left| \frac{a_n}{b_n} - c \right| < \epsilon.$$

(3 points)

The latter inequality can be rewritten as

$$-\epsilon < \frac{a_n}{b_n} - c < \epsilon.$$

and rearranging terms gives

$$(c-\epsilon)b_n < a_n < (c+\epsilon)b_n.$$

(2 points)

- (b) Let $\epsilon = \frac{1}{2}c$ (any $0 < \epsilon < c$ works) and let $N \in \mathbb{N}$ be as in part (a).
 - (i) If $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} 2a_n/c$ converges as well by the Algebraic Limit Theorem for series.

Since $b_n < 2a_n/c$ for all $n \ge N$ it follows by the Comparison Test that $\sum_{n=1}^{\infty} b_n$ converges as well. (Note that the first N terms do not matter for convergence.) (3 points)

(ii) Conversely, if $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} \frac{3}{2}cb_n$ converges as well by the Algebraic Limit Theorem for series.

Since $a_n < \frac{3}{2}cb_n$ for all $n \ge N$ it follows by the Comparison Test that $\sum_{n=1}^{\infty} a_n$ converges as well. (3 points)

(c) Using the standard limit lim_{x→0} sin(x)/x = 1 it follows that with a_n = sin(1/n) and b_n = 1/n we get c = lim a_n/b_n = 1.
(2 points)

The series $\sum_{n=1}^{\infty} b_n$ is the harmonic series and hence diverges. By part (b) it then follows that the series $\sum_{n=1}^{\infty} a_n$ diverges as well. (2 points)

Solution of Problem 3 (8 + 7 = 15 points)

(a) Let ε > 0 be arbitrary. For each a ∈ A the set V_ε(a) is open.
(2 points)

Note that $A \subset \bigcup_{a \in A} V_{\epsilon}(a)$, which means that the collection $\{V_{\epsilon}(a) : a \in A\}$ is an open cover for A.

(2 points)

Since A is compact any open cover has a finite subcover. In particular, this means that A can be covered by finitely many of the sets $V_{\epsilon}(a)$. Hence, there exist finitely many points $a_1, \ldots, a_n \in A$ such that

$$A \subset V_{\epsilon}(a_1) \cup V_{\epsilon}(a_2) \cup \cdots \cup V_{\epsilon}(a_n).$$

(4 points)

(b) First note that the set A = {1/n : n ∈ N} is not compact since it is not closed. Indeed, 0 is a limit point of A which is not contained in A.
(3 points)

Let $\epsilon > 0$ be arbitrary, and choose $n_0 \in \mathbb{N}$ such that $1/n_0 < \epsilon$. Then $0 \in V_{\epsilon}(1/n_0)$ and the set A only has finitely many elements outside $V_{\epsilon}(1/n_0)$. Indeed,

$$\frac{1}{n} > \frac{1}{n_0} + \epsilon \quad \Rightarrow \quad n < \frac{n_0}{1 + \epsilon n_0}.$$

This proves that the noncompact set A can still be covered by finitely many of the open sets $V_{\epsilon}(1/n)$.

(4 points)

Solution of Problem 4 (4 + 6 + 5 = 15 points)

(a) If $f : [a, b] \to \mathbb{R}$ is continuous on [a, b] and differentiable on (a, b), then there exists a point $c \in (a, b)$ where

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

(4 points)

(b) Let $x, y \in [a, \infty)$ be fixed and $x \neq y$; without loss of generality we may assume that x < y. The function f is continuous on [x, y] and differentiable on (x, y) which means that the Mean Value Theorem can be applied. Hence, there exists $c \in (x, y)$ such that

$$\ln(x) - \ln(y) = \ln'(c)(x - y) = \frac{x - y}{c}.$$

Since c > a it follows that

$$|\ln(x) - \ln(y)| = \frac{|x - y|}{c} \le \frac{|x - y|}{a}.$$

(3 points)

Now let $\epsilon > 0$ be arbitrary and choose $\delta \leq a\epsilon$. Then

$$|x-y| < \delta \quad \Rightarrow \quad |\ln(x) - \ln(y)| \le \frac{|x-y|}{a} < \frac{\delta}{a} \le \epsilon,$$

which shows that $f(x) = \ln(x)$ is uniformly continuous on $[a, \infty)$. (3 points)

(c) No, f is not uniformly continuous on $(0, \infty)$. To see this, take the sequences $x_n = e^{-n}$ and $y_n = e^{-(n+1)}$. Then $|x_n - y_n| \to 0$, but $|\ln(x_n) - \ln(y_n)| = 1$ for all $n \in \mathbb{N}$. By the sequential criterion for the absence of nonuniform continuity it follows that $f(x) = \ln(x)$ is not uniformly continuous on $(0, \infty)$. (5 points)

Alternative argument. Let $\epsilon_0 = 1$ and choose $\delta > 0$ arbitrary. Choose $0 < y < \delta/(e-1)$ and x = ey, then

$$|x - y| = x - y = ey - y = (e - 1)y < \delta,$$

but

$$|\ln(x) - \ln(y)| = \ln\left(\frac{x}{y}\right) = 1 = \epsilon_0,$$

which shows that $f(x) = \ln(x)$ is not uniformly continuous on $(0, \infty)$. (5 points)

Solution of Problem 5 (5 + 5 + 5 = 15 points)

- (a) Note that f_n(0) = 0 for all n ∈ N which implies that lim f_n(x) = 0 for x = 0.
 (2 points)
 If 0 < x ≤ 1 then f_n(x) = 0 for all n ≥ 1/x, which implies that lim f_n(x) = 0 as well. Hence, the pointwise limit of (f_n) is the zero function.
 (3 points)
- (b) Solution 1. Note that $f_n(1/2n) = 1$ for all $n \in \mathbb{N}$, which implies that

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = 1 \quad \text{for all} \quad n \in \mathbb{N}.$$

This implies that

$$\lim_{n \to \infty} \left(\sup_{x \in [0,1]} |f_n(x) - f(x)| \right) = 1 \neq 0.$$

Hence, the convergence is not uniform on [0, 1]. (5 points)

Solution 2. If the convergence were uniform on [0, 1], then for each $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$n \ge N \Rightarrow |f_n(x) - f(x)| < \epsilon \text{ for all } x \in [0, 1].$$

In particular, this should hold for $0 < \epsilon < 1$. However, taking x = 1/2n violates this definition. Hence, the convergence is not uniform on [0, 1]. (5 points)

(c) Solution 1. Note that $f_n(x) = 0$ on $[\frac{1}{2}, 1]$ for all $n \ge 2$, which implies that

$$\lim_{n \to \infty} \left(\sup_{x \in [\frac{1}{2}, 1]} |f_n(x) - f(x)| \right) = 0,$$

which proves that the convergence is uniform on $[\frac{1}{2}, 1]$. (5 points)

Solution 2. Let $\epsilon > 0$ be arbitrary and take N = 2. Then

$$n \ge N \quad \Rightarrow \quad |f_n(x) - f(x)| = f_n(x) = 0 < \epsilon \quad \text{for all} \quad x \in [\frac{1}{2}, 1],$$

which proves that the convergence is uniform on $[\frac{1}{2}, 1]$. (5 points)

Solution of Problem 6 (6 + 4 + 5 = 15 points)

(a) Since the function is *decreasing* it follows that

$$M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\} = f(x_{k-1}) = \frac{1}{x_{k-1}} = \frac{n}{n+k-1}$$

(2 points)

Furthermore, for all k = 1, ..., n we have that

$$x_k - x_{k-1} = \frac{n+k}{n} - \frac{n+k-1}{n} = \frac{(n+k) - (n+k-1)}{n} = \frac{1}{n}.$$

(2 points)

Hence, the upper sum of f with respect to the partition P is given by

$$U(f, P) = \sum_{k=1}^{n} M_k(x_k - x_{k-1}) = \sum_{k=1}^{n} \frac{1}{n+k-1}.$$

(2 points)

(b) Since the function is *decreasing* it follows that

$$m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\} = f(x_k) = \frac{1}{x_k} = \frac{n}{n+k}.$$

(2 points)

Hence, the lower sum of f with respect to the partition P is given by

$$L(f, P) = \sum_{k=1}^{n} m_k (x_k - x_{k-1}) = \sum_{k=1}^{n} \frac{1}{n+k}.$$

(2 points)

(c) Note that the difference between the upper and lower sum is a telescoping sum:

$$U(f,P) - L(f,P) = \sum_{k=1}^{n} \left(\frac{1}{n+k-1} - \frac{1}{n+k}\right) = \frac{1}{n} - \frac{1}{2n} = \frac{1}{2n}$$

(3 points)

Now, let $\epsilon > 0$ be arbitrary, and choose $n \in \mathbb{N}$ such that $1/n < 2\epsilon$. Then

$$U(f, P) - L(f, P) < \epsilon,$$

which proves that f is integrable. (2 points)